Pre-computed Radiance Transfer

Jaroslav Křivánek, KSVI, MFF UK

Jaroslav.Krivanek@mff.cuni.cz

Goal

- Real-time rendering with complex lighting, shadows, and possibly GI
- Infeasible too much computation for too small a time budget
- Approaches
 - Lift some requirements, do specific-purpose tricks
 - Environment mapping, irradiance environment maps
 - SH-based lighting
 - **Split the effort**
 - Offline pre-computation + real-time image synthesis
 - "Pre-computed radiance transfer"

SH-based Irradiance Env. Maps

Incident Radiance (Illumination Environment Map)

Irradiance Environment Map

SH-based Irradiance Env. Maps

Images courtesy Ravi Ramamoorthi & Pat Hanrahan

SH-based Arbitrary BRDF Shading 1

- [Kautz et al. 2003]
- Arbitrary, dynamic env. map
- Arbitrary BRDF
- No shadows

SH representation

(a) point light

(b) glossy

(c) anisotropic

- Environment map (one set of coefficients)
- Scene BRDFs (one coefficient vector for each discretized view direction)

SH-based Arbitrary BRDF Shading 3

Rendering: for each vertex / pixel, do

Pre-computed Radiance Transfer

Pre-computed Radiance Transfer

Goal

- Real-time + complex lighting, shadows, and GI
- Infeasible too much computation for too small a time budget
- Approach
 - Precompute (offline) some information (images) of interest
 - Must assume something about scene is constant to do so
 - **D** Thereafter real-time rendering. Often hardware accelerated

Assumptions

- Precomputation
- Static geometry
- Static viewpoint (some techniques)

Real-Time Rendering (relighting)
 Exploit linearity of light transport

Relighting as a Matrix-Vector Multiply

$$= \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix}$$

Relighting as a Matrix-Vector Multiply

Output Image (Pixel Vector)

Precomputed Transport Matrix

$$\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{pmatrix} Cubemap Vector \\ L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix}$$

Matrix Columns (Images)

 $\begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \end{bmatrix}$ $T_{32} \cdots T_{3M}$ T_{31} T_{N1} T_{N2} \cdots T_{NM}

Problem Definition

Matrix is Enormous

- 512 x 512 pixel images
- 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable On the order of 10¹⁰ operations *per frame*

How to relight quickly?

Outline

Compression methods

- Spherical harmonics-based PRT [Sloan et al. 02]
- (Local) factorization and PCA
- Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

SH-based PRT

- Better light integration and transport
 - dynamic, env. lights
 - self-shadowing
 - interreflections
- For diffuse and glossy surfaces
- At real-time rates
- Sloan et al. 02

point light

Env. light

Env. lighting, no shadows

Env. lighting, shadows

SH-based PRT: Idea

PRT Terminology

Relation to a Matrix-Vector Multiply

a) SH
coefficients of transferred radiance
b) Irradiance
(per vertex)

$$= \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix}$$

SH coefficients of EM (source radiance)

Idea of SH-based PRT

- The L vector is projected onto low-frequency components (say 25). Size greatly reduced.
- Hence, only 25 matrix columns
- But each pixel/vertex still treated separately
 - One RGB value per pixel/vertex:
 - Diffuse shading / arbitrary BRDF shading w/ fixed view direction
 - SH coefficients of transferred radiance (25 RGB values per pixel/vertex for order 4 SH)
 - Arbitrary BRDF shading w/ variable view direction
- Good technique (becoming common in games) but useful only for broad low-frequency lighting

Diffuse Transfer Results

No Shadows/Inter

Shadows

Shadows+Inter

SH-based PRT with Arbitrary BRDFs

- Combine with Kautz et al. 03
- Transfer matrix turns SH env. map into SH transferred radiance
- Kautz et al. 03 is applied to transferred radiance

Arbitrary BRDF Results

Anisotropic BRDFs

Other BRDFs

Spatially Varying

Outline

Compression methods

- Spherical harmonics-based PRT [Sloan et al. 02]
- (Local) factorization and PCA
- Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

PCA or SVD factorization

• SVD:

• Applying Rank **b**:

• Absorbing **S^j** values into **C^{iT}**:

Idea of Compression

- Represent matrix (rather than light vector) compactly
- Can be (and is) combined with SH light vector
- Useful in broad contexts.
 - BRDF factorization for real-time rendering (reduce 4D BRDF to 2D texture maps) McCool et al. 01 etc
 - Surface Light field factorization for real-time rendering (4D to 2D maps) Chen et al. 02, Nishino et al. 01
 - BTF (Bidirectional Texture Function) compression
- Not too useful for general precomput. relighting
 - Transport matrix not low-dimensional!!

Local or Clustered PCA

- Exploit local coherence (in say 16x16 pixel blocks)
 - Idea: light transport is locally low-dimensional.
 - Even though globally complex
 - See Mahajan et al. 07 for theoretical analysis
- Clustered PCA [Sloan et al. 2003]
 - Combines two widely used compression techniques: Vector Quantization or VQ and Principal Component Analysis

Compression Example

Surface is curve, signal is normal

Following couple of slides courtesy P.-P. Sloan

Compression Example

Signal Space

Cluster normals

Replace samples with cluster mean

 $\mathbf{M}_{p} \approx \tilde{\mathbf{M}}_{p} = \mathbf{M}_{C_{p}}$

Replace samples with mean + linear combination

$$\mathbf{M}_{p} \approx \tilde{\mathbf{M}}_{p} = \mathbf{M}^{0} + \sum_{i=1}^{N} w_{p}^{i} \mathbf{M}^{i}$$

i=1

Compute a linear subspace in each cluster

 $\mathbf{M}_{p} \approx \tilde{\mathbf{M}}_{p} = \mathbf{M}_{C_{p}}^{0} + \sum^{N} w_{p}^{i} \mathbf{M}_{C_{p}}^{i}$

 Clusters with low dimensional affine models • How should clustering be done? - k-means clustering Static PCA – VQ, followed by one-time per-cluster PCA - optimizes for piecewise-constant reconstruction Iterative PCA – PCA in the inner loop, slower to compute - optimizes for piecewise-affine reconstruction

Static vs. Iterative

Equal Rendering Cost

VQ

PCA

Outline

Compression methods

- Spherical harmonics-based PRT [Sloan et al. 02]
- (Local) factorization and PCA
- Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

Sparse Matrix-Vector Multiplication

Choose data representations with mostly zeroes

Vector: Use *non-linear wavelet approximation* on lighting

Matrix: Wavelet-encode transport rows

Haar Wavelet Basis

Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality

- Large wavelets capture low frequency area lighting
- Small wavelets capture high frequency compact features

Non-linear Approximation

- Use a dynamic set of approximating functions (depends on each frame's lighting)
- By contrast, linear approx. uses fixed set of basis functions (like 25 lowest frequency spherical harmonics)
- We choose 10's 100's from a basis of 24,576 wavelets (64x64x6)

Non-linear Wavelet Light Approximation

Wavelet Transform

Non-linear Wavelet Light Approximation

Non-linear Approximation

Retain 0.1% – 1% terms

Error in Lighting: St Peter's Basilica

Ng, Ramamoorthi, Hanrahan 03

Output Image Comparison

Top:Linear Spherical Harmonic ApproximationBottom:Non-linear Wavelet Approximation

25

Outline

- Compression methods
 - Spherical harmonics-based PRT [Sloan et al. 02]
 - (Local) factorization and PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

SH + Clustered PCA

- Described earlier (combine Sloan 03 with Kautz 03)
 - Use low-frequency source light and transferred light variation (Order 5 spherical harmonic = 25 for both; total = 25*25=625)
 - 625 element vector for each vertex
 - Apply CPCA directly (Sloan et al. 2003)
 - Does not easily scale to high-frequency lighting
 - Really cubic complexity (number of vertices, illumination directions or harmonics, and view directions or harmonics)
 - Practical real-time method on GPU

Outline

- Compression methods
 - Spherical harmonics-based PRT [Sloan et al. 02]
 - (Local) factorization and PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

Problem Characterization

6D Precomputation Space

- Distant Lighting (2D)
- View (2D)
- Rigid Geometry (2D)

With ~ 100 samples per dimension ~ 10¹² samples total!! : Intractable computation, rendering

Factorization Approach

Triple Product Integral Relighting

Relit Images (3-5 sec/frame)

Triple Product Integrals

$$B = \int_{S^2} L(\omega) V(\omega) \tilde{\rho}(\omega) d\omega$$

$$= \int_{S^2} \left(\sum_i L_i \Psi_i(\omega) \right) \left(\sum_j V_j \Psi_j(\omega) \right) \left(\sum_k \tilde{\rho}_k \Psi_k(\omega) \right) d\omega$$

$$= \sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) d\omega$$

$$= \sum_i \sum_j \sum_k L_i V_j \tilde{\rho}_k C_{ijk}$$

Basis Requirements

$$B = \sum_{i} \sum_{j} \sum_{k} L_{i} V_{j} \tilde{\rho}_{k} C_{ijk}$$

1. Need few non-zero "tripling" coefficients

$$C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \ d\omega$$

2. Need sparse basis coefficients $L_i, V_j, \tilde{\rho}_k$

1. Number Non-Zero Tripling Coeffs

$$C_{ijk} = \int_{S^2} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) \, d\omega$$

Basis Choice	Number Non-Zero C_{ijk}
General (e.g. PCA)	$O(N^3)$
Sph. Harmonics	$O(N^{5/2})$
Haar Wavelets	$O(N \log N)$

2. Sparsity in Light Approx.

Summary of Wavelet Results

Derive direct O(N log N) triple product algorithm

Dynamic programming can eliminate *log N* term

 Final complexity linear in number of retained basis coefficients

Outline

- Compression methods
 - Spherical harmonics-based PRT [Sloan et al. 02]
 - (Local) factorization and PCA
 - Non-linear wavelet approximation
- Changing view as well as lighting
 - Clustered PCA
 - Triple Product Integrals
- Handling Local Lighting
 - Direct-to-Indirect Transfer

Direct-to-Indirect Transfer

- Lighting non-linear w.r.t. light source parameters (position, orientation etc.)
- Indirect is a linear function of direct illumination
 Direct can be computed in real-time on GPU
 Transfer of direct to indirect is pre-computed
- Hašan et al. 06
 - Fixed view cinematic relighting with GI

DTIT: Matrix-Vector Multiply

$$= \begin{bmatrix} T_{11} & T_{12} & \cdots & T_{1M} \\ T_{21} & T_{22} & \cdots & T_{2M} \\ T_{31} & T_{32} & \cdots & T_{3M} \\ \vdots & \vdots & \ddots & \vdots \\ T_{N1} & T_{N2} & \cdots & T_{NM} \end{bmatrix} \begin{bmatrix} L_1 \\ L_2 \\ \vdots \\ L_M \end{bmatrix}$$
Direct illumination on a set of samples distributed on scene surfaces

Compression: Matrix rows in Wavelet basis

DTIT: Demo

Summary

- Really a big data compression and signalprocessing problem
- Apply many standard methods
 PCA, wavelet, spherical harmonic, factor compression
- And invent new ones
 - VQPCA, wavelet triple products
- Guided by and gives insights into properties of illumination, reflectance, visibility
 - How many terms enough? How much sparsity?